23PROP and deformation theory of (co)associative bialgebras
نویسنده
چکیده
We introduce a concept of 2 3 PROP generalizing the Kontsevich concept of 1 2 PROP. We prove that some Stasheff-type compactification of the Kontsevich spaces K(m,n) defines a topological 2 3 PROP structure. The corresponding chain complex is a minimal model for its cohomology (both are considered as 2 3 PROPs). We construct a 2 3 PROP End(V ) for a vector space V . Finally, we construct a dg Lie algebra controlling the deformations of a (co)associative bialgebra. Philosophically, this construction is a version of the Markl’s operadic construction from [M1] applied to minimal models of 2 3 PROPs.
منابع مشابه
An explicit deformation theory of (co)associative bialgebras
We find here another (not of the CROC-type) compactification of the Kontsevich spaces K(m,n). This compactification is a Stasheff-type compactification, in particular, it is exactly the Stasheff compactification when n = 1 or m = 1. The boundary strata of this compactification are products of the spaces K(m, n) and of the Stasheff polyhedra. Then we construct a dg Lie algebra naturally associat...
متن کاملDeformation Theory of Representations of Prop(erad)s I
In this paper and its follow-up [MV08], we study the deformation theory of morphisms of properads and props thereby extending Quillen’s deformation theory for commutative rings to a non-linear framework. The associated chain complex is endowed with an L∞-algebra structure. Its Maurer-Cartan elements correspond to deformed structures, which allows us to give a geometric interpretation of these r...
متن کاملAn explicit formula for the deformation quantization of Lie bialgebras
A model of 3-dimensional topological quantum field theory is rigorously constructed. The results are applied to an explicit formula for deformation quantization of any finite-dimensional Lie bialgebra over the field of complex numbers. This gives an explicit construction of "quantum groups" from any Lie bialgebra, which was proven without explicit formulas in [EK]. Introduction The most ideal g...
متن کاملJ un 2 00 3 The CROCs , non - commutative deformations , and ( co ) associative bialgebras
We compactify the spaces K(m,n) introduced by Maxim Kontsevich. The initial idea was to construct an L∞ algebra governing the deformations of a (co)associative bialgebra. However, this compactification leads not to a resolution of the PROP of (co)associative bialgebras, but to a new algebraic structure we call here a CROC. It turns out that these constructions are related to the non-commutative...
متن کاملHom-quantum Groups Ii: Cobraided Hom-bialgebras and Hom-quantum Geometry
A class of non-associative and non-coassociative generalizations of cobraided bialgebras, called cobraided Hom-bialgebras, is introduced. The non-(co)associativity in a cobraided Hom-bialgebra is controlled by a twisting map. Several methods for constructing cobraided Hombialgebras are given. In particular, Hom-type generalizations of FRT quantum groups, including quantum matrices and related q...
متن کامل